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“Phenomenological” non-
G i iGaussianity

• assume local non-Gaussianity
• z(x,t) = f(fI

Gauss (x,t))
• ‚ fI

Gauss(k) fI
Gauss(-k) Ú ∂ H2 / 2k3 = G0(k)

• assume two Gaussian fieldsassume two Gaussian fields
– f = inflaton
– c = new scalar 

• point• point
– dominant dependence of z on f is linear
– but dominant non-linearity of z depends on c, not f

allows non Gaussianity consistent with slow rolling inflaton– allows non-Gaussianity consistent with slow-rolling inflaton
• “phenomenological”                                                                     
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can read local momentum shape 
f difrom diagrams....
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• momentum shape = local
– dependence of HHC, C1, Ai on 

A1A2 G0(k2)
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k  scale dependence
– dHHC/dk , dC1/dk ö e,h
– if Ai const  scale dep. goes 

as slo roll parameters t

A1A2 A1A3

as slow-roll parameters tNL gNL

A1A2 A1A1



WMAP Planck and beyondWMAP, Planck, and beyond...

• can probe this soon... • WMAP
• COBE normalizes 2pt.
• WMAP

– bounds 2-pt. running

– -10 < fNL < 74  (7 year data)
– | tNL | < 104 (5 year data)
– | gNL | < 106 (5 year data)bounds 2 pt. running

– bounds on 3-pt. consistent 
with Gaussian perturbations

– bounds on 4-pt. could be 

NL

• Planck
– DfNL < 7
– | tNL | < 103p

improved....
• Planck satellite will significantly 

constrain all of these

| tNL | < 10
– | gNL | < 105 (SDSS comparable)
– nfNL º 0.1

• Euclid
• SDSS,Euclid, LSST (larger k)?
• what does local form tell us 

about NG? Vice versa?

• Euclid
– |gNL| < 104

• CMBPol,LSST,PanSTARRS, 
etc  comparableetc.  comparable



scale dependence from loopsscale dependence from loops

• higher order non-linearities 
introduce momentum integrals 
which are not fixed by 
momentum conservation A2A2

G0(k’)

• “loop” diagrams
– induce scale-dependence 

even if coeff. are constant 

2

G0(k-k’)

– start with only quadratic terms
• leading scale-dependence in 

the IR logarithmic

A2

– ∂Ûd3k k-3 as loop propagator 
goes on-shell

• logarithmic IR divergence 
A A• impose IR cutoff A2 A2G0(k’)



2pt correlator -- ‚ z(k) z(-k) Ú2pt. correlator ‚ z(k) z( k) Ú

• linear term ∂ N2 G0(k) G0(k)
• nonlinear term -- c coupling 

only
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• same shape up to log
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momentum shapemomentum shape....

• we can now see roughly what is happening
– leading loop integral behavior  one correlator with small momentum 

inside integral, while other correlators factor outside integral 
– like a tree diagram, with a log factor from momentum integral kIR to k

• wavelengths longer than universe (L) contribute to the “effective” 
zero-mode variance, and should be treated a constant 
– for k’< L-1, mode is treated as a constant and absorbed into a lower-

order term
– zk = C1fk + A1ck + (1/2)A2Û(d3k’/(2p)3) ck’ck-k’ +... where k,k’ > L-1

– swap L-1 for kIR A22

A2 A2G0(k’)ºG0(0)



loop correctionloop correction

• “loop diagram” = “tree-diagram” × F1

• F1 = (A2/A1)2 P ln(kL) = loop factor
– (A2/A1) factor accounts for different coefficient of the quadratic term(A2/A1) factor accounts for different coefficient of the quadratic term
– P factor accounts for normalization of removed correlator
– integral over modes from L-1 to k generate ln(kL)
– “k” is a momentum scale set by the external momenta but its precisek  is a momentum scale set by the external momenta, but its precise 

value depends on the diagram

• loop and tree diagrams have the same shape up to ln(k) correctionsloop and tree diagrams have the same shape, up to ln(k) corrections
– loop can dominate, even if perturbation theory valid



fNLfNL

• constraints • P½N ~ 10-5

– COBE normalization of the 
curvature 2pt. function

– WMAP bounds 2pt. running

• ns-1= PA2
2[N2+PA2

2ln(kL)]-1

• PA2
2 / N2 ≤ 10-2

– assume loop term is a small 
contribution to the 2pt.

• loop contribution bounded
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– loop contribution can dominate
the 3pt. correlator if F1 >1

• resolvable at Planck
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– fNL larger at smaller scales
– LSS?  
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quadratic contribution to 4ptquadratic contribution to 4pt

• only generates tNL

A1A2

• tNL controlled by same loop 
factor (F1) as fNL

tree

A2 A1

• loop contribution bounded
• if loop term dominates

t ~ ( PA 2 / P½N3 )2 ln(kL) loop

A2A2

– tNL ~ ( PA2
2 / P½N3 )2 ln(kL)

– <106 ln(kL)
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cubic expansion (in progress)cubic expansion (in progress)....

• new local shape induced for 
4pt by cubic interactions

• induces tree contribution to gNL

• 1-loop contribution to fNL,  tNL

gNL

p NL, NL
and gNL

• 2-loop contribution to 2pt.
– constrainedconstrained
– F2 = (A3/A1) P ln(kL)

• new loop factor ( <0 ?)
– if F large dominant

gNL (F1) tNL (F2)
– if F2 large, dominant 

contribution to fNL, tNL from 
cubic loop 

fNL (F2)fNL (F2)

2pt. (~F2
2)



higher loop correctionshigher loop corrections

• if one-loop contributions can 
dominate... can higher-loop 
contributions also?  Yes

• but for fixed n-point function 

2-loop correction
to tNL

and fixed order in non-linearity, 
loop expansion truncates

• whether or not higher-loop 
3 loop correctionterms needed just depends on 

ratios Ai / Aj

• also depends on precise 

3-loop correction
to tNL

dependence of log on external 
momenta

– details of which momenta are 
probed by observations i !probed by observations in progress!



ConclusionsConclusions

• new data (including Planck) is poised to probe non-Gaussianity in 
3pt and 4pt function

• multi-field models can generate non-trivial local spectrum for 3pt and g p p
4pt (both shapes)

• loop diagrams will generate scale dependence even for modelsloop diagrams will generate scale dependence even for models 
where expansion coefficients are constant

• predictions and bounds for loop dominated models• predictions and bounds for loop-dominated models

Mahalo!


