Non-Gaussianity and Scale Dependence

Jason Kumar University of Hawai'i (w/ J. Bramante, L. Leblond and A. Rajaraman) arXiv:0909.2040, 1002.4214, 11xx.xxxx

"Phenomenological" non-Gaussianity

- assume local non-Gaussianity
- $\zeta(\mathbf{x},t) = f(\phi_{\text{Gauss}}^{I}(\mathbf{x},t))$
- $\langle \phi^{I}_{Gauss}(k) \phi^{I}_{Gauss}(-k) \rangle \propto H^{2} / 2k^{3} = G_{0}(k)$
- assume two Gaussian fields
 - $-\phi$ = inflaton
 - $-\chi$ = new scalar
- point
 - dominant dependence of ζ on ϕ is linear
 - but dominant non-linearity of ζ depends on χ , not ϕ
 - allows non-Gaussianity consistent with slow-rolling inflaton
- "phenomenological" expansion

$$\zeta(x,t) = C_1 \phi + A_1 \chi + \frac{1}{2} A_2 \left(\chi^2 - \left\langle\chi^2\right\rangle\right) + \frac{1}{6} A_3 \chi^3 + \cdots$$

$$\zeta_{k} = C_{1}\phi_{k} + A_{1}\chi_{k} + \frac{1}{2}A_{2}\int \frac{d^{3}k'}{(2\pi)^{3}}\chi_{k'}\chi_{k-k'} + \cdots$$

can read local momentum shape from diagrams....

$$\left\langle \zeta\left(\vec{k}_{1}\right)\zeta\left(\vec{k}_{2}\right)\right\rangle = (2\pi)^{3} \left(C_{1}^{2} + A_{1}^{2}\right) G_{0}\left(\vec{k}_{1}\right) \delta^{3}\left(\vec{k}_{1} + \vec{k}_{2}\right)$$

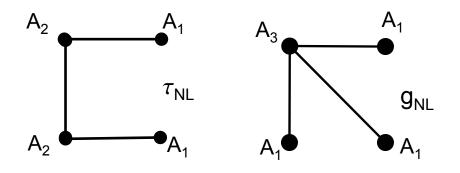
$$= (2\pi)^{3} N^{2} H^{2} \left(\frac{1}{2k_{1}^{3}}\right) \delta^{3}\left(\vec{k}_{1} + \vec{k}_{2}\right)$$

$$C_{1}, A_{1} \bullet G_{0}(k)$$

$$C_{1}, A_{1} \bullet G_{1}(k)$$

$$\left\langle \zeta\left(\vec{k}_{1}\right)\zeta\left(\vec{k}_{2}\right)\zeta\left(\vec{k}_{3}\right)\right\rangle = (2\pi)^{3} \left(A_{1}^{2}A_{2}\right) \left[G_{0}\left(\vec{k}_{1}\right)G_{0}\left(\vec{k}_{2}\right) + perms.\right] \delta^{3}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{3}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4}\left(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}\right) \right] \delta^{4} \left[\frac{A_{1}}{4k_{1}^{3}k_{2}^{3}} + perms.\right] \delta^{4} \left[\frac{A_{1}}{4k_$$

- momentum shape = local
 - dependence of H_{HC} , C_1 , A_i on k → scale dependence
 - dH_{HC}/dk , $dC_1/dk \longrightarrow \epsilon, \eta$
 - if A_i const → scale dep. goes as slow-roll parameters



 A_2

A₁

 $G_0(k_2)$

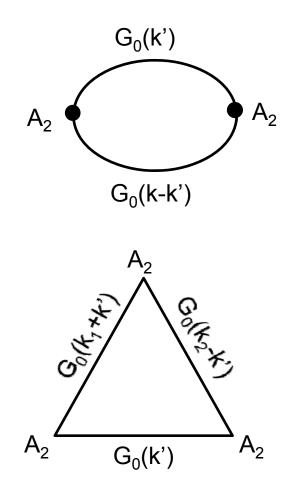
WMAP, Planck, and beyond...

- can probe this soon...
- COBE normalizes 2pt.
- WMAP
 - bounds 2-pt. running
 - bounds on 3-pt. consistent with Gaussian perturbations
 - bounds on 4-pt. could be improved....
- Planck satellite will significantly constrain all of these
- SDSS, Euclid, LSST (larger k)?
- what does local form tell us about NG? Vice versa?

- WMAP
 - $-10 < f_{NL} < 74$ (7 year data)
 - $|\tau_{\rm NL}| < 10^4$ (5 year data)
 - $|g_{NL}| < 10^{6} (5 \text{ year data})$
- Planck
 - $-\Delta f_{NL} < 7$
 - $|\tau_{\rm NL}| < 10^3$
 - $|g_{NL}| < 10^5$ (SDSS comparable)
 - $n_{f_{NL}} \approx 0.1$
- Euclid
 - $|g_{NL}| < 10^4$
- CMBPol,LSST,PanSTARRS, etc. → comparable

scale dependence from loops

- higher order non-linearities introduce momentum integrals which are not fixed by momentum conservation
- "loop" diagrams
 - induce scale-dependence even if coeff. are constant
 - start with only quadratic terms
- leading scale-dependence in the IR logarithmic
 - ∞∫d³k k⁻³ as loop propagator goes on-shell
- logarithmic IR divergence
- impose IR cutoff

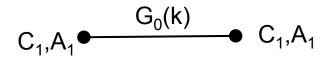


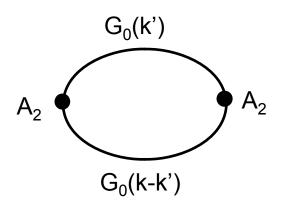
2pt. correlator -- $\langle \zeta(k) \zeta(-k) \rangle$

- linear term $\propto N^2 G_0(k)$
- nonlinear term --
 x coupling only

$$A_{2}^{2}\int \frac{d^{3}k'}{(2\pi)^{3}}G_{0}(\vec{k'})G_{0}(\vec{k}-\vec{k'})$$

- leading loop contribution from $k' \approx 0, k$
- cut off by denom. when |k'|~|k|
- same shape up to log

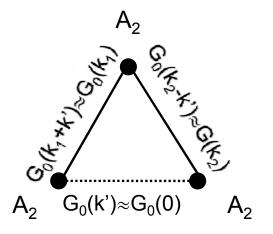




$$\sim A_2^2 G_0(k) \int_{k_{IR}}^k \frac{d^3 k'}{(2\pi)^3} \frac{H^2}{2k'^3} \sim A_2^2 G_0(k) P \ln \frac{k}{k_{IR}} \qquad P = \left(\frac{H}{2\pi}\right)^2$$

momentum shape

- we can now see roughly what is happening
 - leading loop integral behavior → one correlator with small momentum inside integral, while other correlators factor outside integral
 - like a tree diagram, with a log factor from momentum integral k_{IR} to k
- wavelengths longer than universe (L) contribute to the "effective" zero-mode variance, and should be treated a constant
 - for k'< L⁻¹, mode is treated as a constant and absorbed into a lowerorder term
 - $\zeta_k = C_1 \phi_k + A_1 \chi_k + (1/2) A_2 \int (d^3 k' / (2\pi)^3) \chi_{k'} \chi_{k-k'} + ... \text{ where } k, k' > L^{-1}$
 - swap L^{-1} for k_{IR}



loop correction

- "loop diagram" = "tree-diagram" × F₁
- $F_1 = (A_2/A_1)^2 P \ln(kL) = loop factor$
 - (A_2/A_1) factor accounts for different coefficient of the quadratic term
 - P factor accounts for normalization of removed correlator
 - integral over modes from L^{-1} to k generate ln(kL)
 - "k" is a momentum scale set by the external momenta, but its precise value depends on the diagram
- loop and tree diagrams have the same shape, up to ln(k) corrections
 - loop can dominate, even if perturbation theory valid

f_{NL}

- constraints
 - COBE normalization of the curvature 2pt. function
 - WMAP bounds 2pt. running
 - assume loop term is a small contribution to the 2pt.
- loop contribution bounded
 - loop contribution can dominate the 3pt. correlator if $F_1 > 1$
- resolvable at Planck
 - f_{NL} larger at smaller scales
 - LSS?

- P¹/₂N ~ 10⁻⁵
- n_s-1= PA₂²[N²+PA₂²ln(kL)]⁻¹
- $PA_2^2 / N^2 \le 10^{-2}$

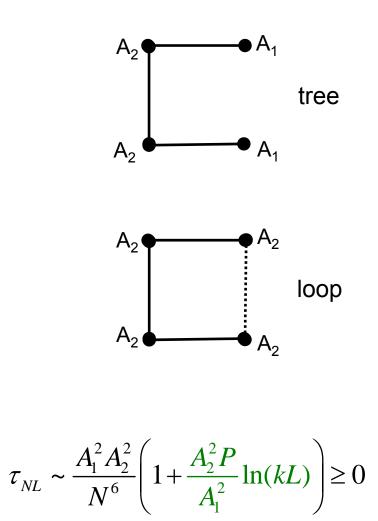
$$f_{NL} \approx -\frac{5}{6} \frac{A_1^2 A_2}{N^4} \left[1 + \frac{A_2^2 P}{A_1^2} \ln(kL) \right]$$

$$\left|f_{NL}^{loop}\right| \approx \frac{5}{6} \frac{\left(PA_2^2 / N^2\right)^{3/2}}{P^{1/2}N} \ln(kL) \le 100 \ln(kL)$$

$$n_{f_{NL}} \cong \frac{F_1 / \ln \left(kL \right)}{1 + F_1} \xrightarrow{F_1 \gg 1} \frac{1}{\ln \left(kL \right)}$$

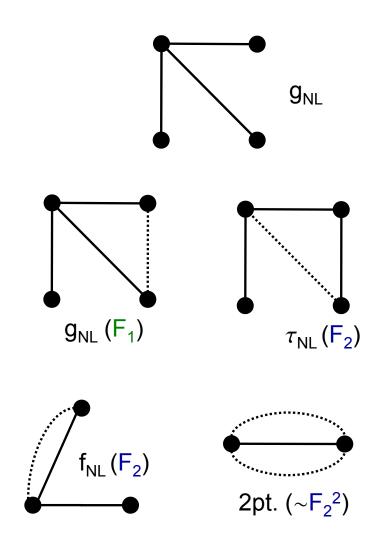
quadratic contribution to 4pt

- only generates $\tau_{\rm NL}$
- τ_{NL} controlled by same loop factor (F₁) as f_{NL}
- loop contribution bounded
- if loop term dominates
 - $\tau_{\rm NL} \sim ({\rm PA_2^2}/{\rm P^{1/2}N^3})^2 \ln({\rm kL})$
 - <10⁶ ln(kL)
- resolvable at Planck



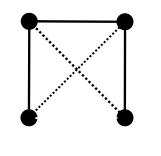
cubic expansion (in progress)....

- new local shape induced for 4pt by cubic interactions
- induces tree contribution to g_{NL}
- 1-loop contribution to $\rm f_{\rm NL},\ \tau_{\rm NL}$ and $\rm g_{\rm NL}$
- 2-loop contribution to 2pt.
 - constrained
 - $F_2 = (A_3/A_1) P \ln(kL)$
 - new loop factor (<0 ?)
 - if F_2 large, dominant contribution to f_{NL} , τ_{NL} from cubic loop

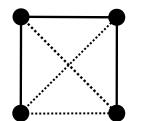


higher loop corrections

- if one-loop contributions can dominate... can higher-loop contributions also? Yes
- but for fixed n-point function and fixed order in non-linearity, loop expansion truncates
- whether or not higher-loop terms needed just depends on ratios A_i / A_j
- also depends on precise dependence of log on external momenta
 - details of which momenta are probed by observations



2-loop correction to $\tau_{\rm NL}$



3-loop correction to $\tau_{\rm NL}$

in progress!

Conclusions

- new data (including Planck) is poised to probe non-Gaussianity in 3pt and 4pt function
- multi-field models can generate non-trivial local spectrum for 3pt and 4pt (both shapes)
- loop diagrams will generate scale dependence even for models where expansion coefficients are constant

predictions and bounds for loop-dominated models

Mahalo!